Link Scheduling Algorithm with Interference Prediction for Multiple Mobile WBANs
نویسندگان
چکیده
As wireless body area networks (WBANs) become a key element in electronic healthcare (e-healthcare) systems, the coexistence of multiple mobile WBANs is becoming an issue. The network performance is negatively affected by the unpredictable movement of the human body. In such an environment, inter-WBAN interference can be caused by the overlapping transmission range of nearby WBANs. We propose a link scheduling algorithm with interference prediction (LSIP) for multiple mobile WBANs, which allows multiple mobile WBANs to transmit at the same time without causing inter-WBAN interference. In the LSIP, a superframe includes the contention access phase using carrier sense multiple access with collision avoidance (CSMA/CA) and the scheduled phase using time division multiple access (TDMA) for non-interfering nodes and interfering nodes, respectively. For interference prediction, we define a parameter called interference duration as the duration during which disparate WBANs interfere with each other. The Bayesian model is used to estimate and classify the interference using a signal to interference plus noise ratio (SINR) and the number of neighboring WBANs. The simulation results show that the proposed LSIP algorithm improves the packet delivery ratio and throughput significantly with acceptable delay.
منابع مشابه
An Interference-Aware Traffic-Priority-Based Link Scheduling Algorithm for Interference Mitigation in Multiple Wireless Body Area Networks
Currently, wireless body area networks (WBANs) are effectively used for health monitoring services. However, in cases where WBANs are densely deployed, interference among WBANs can cause serious degradation of network performance and reliability. Inter-WBAN interference can be reduced by scheduling the communication links of interfering WBANs. In this paper, we propose an interference-aware tra...
متن کاملInterference Mitigation in WBANS: Challenges and Existing solutions
Wireless Body Area Networks (WBANs) are an exciting new networking technology developed in the recent years with advancements in wireless communication, integrated circuits and Micro-ElectroMechanical Systems (MEMs). They consist of a number of sensor nodes that are placed in or around the human body. However, their practical deployment requires addressing numerous challenges. WBANs face many s...
متن کاملEfficient Medium Access Arbitration Among Interfering WBANs Using Latin Rectangles
The overlap of transmission ranges among multiple Wireless Body Area Networks (WBANs) is referred to as coexistence. The interference is most likely to affect the communication links and degrade the performance when sensors of different WBANs simultaneously transmit using the same channel. In this paper, we propose a distributed approach that adapts to the size of the network, i.e., the number ...
متن کاملA two-stage game theoretical approach for interference mitigation in Body-to-Body Networks
In this paper, we identify and exploit opportunities for cooperation between a group of mobile Wireless Body Area Networks (WBANs), forming a Body-to-Body Network (BBN), through inter-body interference detection and subsequent mitigation. Thus, we consider a dynamic system composed of several BBNs and we analyze the joint mutual and cross-technology interference problem due to the utilization o...
متن کاملMaximum Allowable Dynamic Load of Flexible 2-Link Mobile Manipulators Using Finite Element Approach
In this paper a general formulation for finding the maximum allowable dynamic load (MADL) of flexible link mobile manipulators is presented. The main constraints used for the algorithm presented are the actuator torque capacity and the limited error bound for the end-effector during motion on the given trajectory. The precision constraint is taken into account with two boundary lines in plane w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017